The independent domination number of maximal triangle-free graphs
نویسنده
چکیده
A triangle-free graph is maximal if the addition of any edge produces a triangle. A set S of vertices in a graph G is called an independent dominating set if S is both an independent and a dominating set of G. The independent domination number i(G) of G is the minimum cardinality of an independent dominating set of G. In this paper, we show that i(G) ≤ δ(G) ≤ n 2 for maximal triangle-free graphs G of order n and minimum degree δ(G). We characterize the graphs attaining the latter bound. We also show that, given a positive integer k ≥ 2 and any positive integer n ≥ 5k 2 , there exists a non-bipartite maximal triangle-free graph G of order n with i(G) = k.
منابع مشابه
Some Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملIndependent dominating sets in triangle-free graphs
The independent domination number of a graph is the smallest cardinality of an independent set that dominates the graph. In this paper we consider the independent domination number of triangle-free graphs. We improve several of the known bounds as a function of the order and minimum degree, thereby answering conjectures of Haviland.
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملPerfect graphs of strong domination and independent strong domination
Let γ(G), i(G), γS(G) and iS(G) denote the domination number, the independent domination number, the strong domination number and the independent strong domination number of a graph G, respectively. A graph G is called γi-perfect (domination perfect) if γ(H) = i(H), for every induced subgraph H of G. The classes of γγS-perfect, γSiS-perfect, iiS-perfect and γiS-perfect graphs are defined analog...
متن کاملIndependent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 42 شماره
صفحات -
تاریخ انتشار 2008